Functional surfaces through immobilization of polymersome nanocompartments

<u>G. Gunkel-Grabole^{1,3}</u>, T. Einfalt¹, M. Loroma¹, C. Spinnler¹, S. Lörcher¹, S. Mantri², C. G. Palivan¹, W. Meier¹*

¹Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland, ²Laboratory of Organic Chemistry ETH Zürich, Hönggerberg, Zürich, Switzerland, ³ Gesine.Gunkel@unibas.ch

Amphiphilic block copolymers possess the ability to self-assemble into planar membranes and nanometer-sized spherical architectures such as micelles and vesicles.^{1,2} The intrinsic properties of polymers and the variety of monomers available to synthesize block copolymers give access to a library of functionalities that are explored to specifically modulate interactions. The covalent immobilization of polymer vesicles on solid support is realized using a thiol-ene reaction, and the conditions are optimized towards maintaining structural integrity of the hollow polymer architectures.³ Thus, functional surfaces can be generated when immobilized polymer vesicles act as protected compartments to perform enzymatic reactions.

Figure 1. a) Visualization of polymer vesicles composed of polydimethylsiloxanepolyoxazoline triblock copolymers by transmission electron microscopy (scale bar 200 nm) and b) visualization of a surface immobilized polymer vesicles by atomic force microscopy.

[1] G. Gunkel-Grabole, S. Sigg, M. Lomora, S. Lörcher, C. Palivan, W. Meier; *Biomater. Sci.* 2015, *3*, 25-40.

[2] T. Einfalt, G. Gunkel, M. Spulber, A. Najer, C. Palivan, *CRC Concise Encyclopedia of Nanotechnology*, **2015**, 1055-1072.

[3] G. Gunkel-Grabole, C. Palivan, W. Meier; *Macromol. Mater. Eng.* 2017, 302, 1600363.