Free-radical transformations involving organoboranes and hydrazones

C. Meléndez¹, P. Renaud¹*

¹University of Bern

Trialkylboranes and alkyl-catecholboranes (commercially available or prepared by hydroboration of olefins) represent a versatile source of alkyl radicals which can be used in different synthetic transformations.¹ The nucleophilic character of the radicals generated makes possible their addition to suitable electrophilic traps.² In this work we describe the addition of alkyl radicals to hydrazones which by turn can serve as a method for the functionalization of olefins. Additionally, we present insights about how the corresponding products can be further transformed into compounds of synthetic value.

$$R^{1}_{B}$$
 R^{1} R^{2} R^{2} R^{1}_{B} R^{2} R^{2} R^{1}_{B} R^{2} R^{3} R^{2} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{3} R^{4} R^{2} R^{2} R^{3} R^{4} R^{2} R^{2} R^{3} R^{4} R^{2} R^{4} R^{2} R^{4} R^{4}

- [1] Cyril Ollivier, Philippe Renaud, *Chem. Rev.* **2001**, 101, 3415–3434.
- [2] Gregory K. Friestad, Tetrahedron, 2001, 57, 5461-5496.