Physical Chemistry, Short talk
PC-015

High resolution analysis and quantum dynamics of fluoroform 12,13CHF3

I. Bolotova1, S. Albert1, S. Bauerecker2, E. Bekhtereva3,1, Z. Chen1, C. Fabri1, H. Hollenstein1, M. Quack1*, O. Ulenikov3,1
1Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland, 2Physical Chemistry, TU Braunschweig, Hans-Sommer-Strasse 10, 38106 Braunschweig, Germany, 3Institute of Physics and Technology, Tomsk Polytechnic University, Lenin av. 30, 634000 Tomsk, Russia

The spectroscopy of 12CHF3 has been the basis for the study of time independent and time dependent quantum dynamics for a long time [1-9]. There have also been substantial efforts concerning the ab initio potential hypersurface ([10, 11] and references cited therein). We present a survey of our recent analyses ranging from the Terahertz (Far infrared) spectral range to about 3000 cm-1, with particular emphasis on the pure rotational (FIR) spectra measured at the infrared beamline of the Swiss synchrotron Light Source (SLS), ν3 fundamental (700 cm-1 range), the ν2, ν5, ν36 polyad (1200 cm-1 range), the ν4/2ν3 dyad (1400 cm-1), the 2ν4 (A1 and E) dyad and results on the 13CHF3 isotopomer including the ν1 fundamental. The implications for the study of intramolecular vibrational energy redistribution (IVR) will be outlined with particular emphasis on 13C isotope effects.

[1] a) S. Albert, K. Keppler Albert, H. Hollenstein, C. Manca-Tanner, and M. Quack Fundamentals of Rotation-Vibration Spectra, Vol. 1, pp. 117-173; b) S. Albert, K. Keppler Albert, and M. Quack High-Resolution Fourier Transform Infrared Spectroscopy, Vol. 2, pp. 965-1019; c) M. Quack Fundamental Symmetries and Symmetry Violations from High-Resolution Spectroscopy, Vol. 1, pp. 659-722 in Handbook of High Resolution Spectroscopy, M. Quack and F. Merkt eds., Wiley Chichester (2011).
[2] H.-R. Dübal, M. Quack, Chemical Physics Letters, 1981, 80, 439; H.-R. Dübal, M. Quack, Journal of Chemical Physics, 1984, 81, 3779.
[3] R. Marquardt, M. Quack, J. Stohner, E. Sutcliffe, J. Chem. Soc., Faraday Transac., 1986, 82, 1173.
[4] A. S. Pine, J. M. Pliva, Journal of Molecular Spectroscopy, 1988, 130, 431.
[5] J. Segall, R. N. Zare, H.-R. Dübal, M. Lewerenz, M. Quack, Journal of Chemical Physics, 1986, 86, 634.
[6] A. Amrein, M. Quack, U. Schmitt, Molecular Physics, 1987, 60, 237.
[7] A. Amrein, M. Quack, U. Schmitt, Journal of Physical Chemistry, 1988, 92, 5455.
[8] M. Quack, Annual Review of Physical Chemistry, 1990, 41, 839.
[9] T. Carrington Jr., L. Halonen, M. Quack, Chemical Physics Letters, 1987, 140, 512.
[10] T. K. Ha, M. Lewerenz, R. Marquardt, M. Quack, Journal of Chemical Physics, 1990, 93, 7097.
[11] R. Marquardt, M. Quack Global Analytical Potential Energy Surfaces for High-Resolution Molecular Spectroscopy and Reaction Dynamics, Vol. 1, pp. 511-550 in [1].