Rational design of sulfur-tolerant ruthenium catalysts for dry biomass derived CO methanation D. Kuzmenko¹, C. Copéret²*, M. Nachtegaal¹, T. Schildhauer¹* ¹Paul Scherrer Institute, ²ETH Zürich The process of methane production from dry biomass, called wood-to-Synthetic Natural Gas (SNG), consists of 4 main steps: biomass gasification, syngas cleaning to remove catalyst poisons such as H_2S , COS and C_4H_4S using "cold" gas cleaning technologies, methanation and upgrading to remove H_2O and CO_2 .¹ To make SNG cost-competitive, the concept of integrating gas cleaning with methanation, which utilizes the ability of ruthenium-based catalysts to be regenerated under oxidizing atmosphere after sulfur poisoning is explored.² However, a complete recovery of the catalytic activity after the regeneration cannot be achieved so far, probably because of a combination of several reasons. Firstly, Al_2O_3 support of the nanoparticles can "store" some of the sulfur poisons in the form of sulfate, which prevent efficient regeneration.² Secondly, TEM and XAS analysis evidences particle sintering upon recycling of originally 1 nm particle in Ru/Al_2O_3 . Here, we show that silica largely improve the regeneration process, because it is less prompt to sulfur storage (Fig. 1a). Operando XAS at the sulfur K-edge (Fig. 1b) and DRIFTS (Fig. 1c) showed that sulfate species formed on SiO_2 are unstable and could be removed by subsequent treatment with H_2 . However, sintering still remains an issue. In addition, DRIFT spectroscopy revealed altered CO adsorption profile for the regenerated catalyst, implying that structural and/or electronic properties of the catalyst are changed after a poisoning-regeneration cycle. **Figure 1:** a) SO_2 detected at the reactor outlet for Ru/Al_2O_3 (red) and Ru/SiO_2 (blue) b) Sulfur K-edge XAS spectrum of Ru/SiO_2 catalyst taken during methanation with poisoning (blue), regeneration in 1% O_2 (red) and subsequent methanation (green); c) DRIFTS spectrum of Ru/SiO_2 showing sulfate (ca. 1425 cm⁻¹ band)⁴ formation (1% O_2 regeneration after catalyst poisoning, red) and decomposition (1% H_2 , green) on SiO_2 surface - [1] C. F. J. König et al. in T. J. Schildhauer, S. M. A. Biollaz (Eds.), Synthetic Natural Gas from Coal, Dry Biomass, and Power-to-Gas Applications, John Wiley & Sons, **2016**. - [2] C. F. J. König et al., *Catalysis Today*, **2014**, 229, 56 63 - [3] D. L. Trimm in G. Ertl, H. Knözinger, J. Weitkamp (Eds.), Handbook of Heterogeneous Catalysis, VCH Verlagsgesellschaft mbH, **1997** - [4] D. Bounechada, et al, J. Phys. Chem. C, 118, **2014** pp. 29713–29723