$\mathrm{Mo}\left(\mathrm{OSi}(\mathrm{tBu})_{3}\right)_{3}$: Structure and Reactivity

M. Pucino ${ }^{1}$, F. Allouche ${ }^{1}$, M. Wörle ${ }^{2}$, C. Copéret ${ }^{1 *}$
${ }^{1}$ ETH Zurich, ${ }^{2}$ ETH Zürich

Cr (III) surface species, prepared from Cr (III) siloxide molecular precursor, are highly active catalysts for olefin polymerization and alkane dehydrogenation. ${ }^{1,2}$ We have thus become interested in generating low coordinated isoelectronic Mo (III) surface to investigate their corresponding reactivity. To date, low coordinate Mo (III) compounds are rare; they typical require large somewhat rigid ligands like in $\mathrm{Mo}[\mathrm{N}(\mathrm{R}) \mathrm{Ar}]_{3} \quad\left(\mathrm{R}=\mathrm{tBu}, \mathrm{Ar}=3,5-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}_{2}\right)^{2}$ and $\mathrm{Mo}\left(\mathrm{OSi}{ }^{\mathrm{t}} \mathrm{Bu}\right)_{3} \cdot{ }^{3}$ Here, we have developed the synthesis of $\mathrm{Mo}\left(\mathrm{OSi}(\mathrm{OtBu})_{3}\right)_{3}(\mathbf{1})$ and investigated its reactivity towards a broad range of small molecules $\left(\mathrm{CO}_{x}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{O}_{2}, \mathrm{~S}_{8}\right.$, ethylene and $\left.\mathrm{N}_{2}\right)$. The complex 1 has three siloxy ligands adopting a k^{2}-coordination, yielding an overall distorted octahedral geometry. This complex reacts at room temperature with N_{2} to give the corresponding Mo (VI)-nitrido compound by dinitrogen splitting via $[\mathrm{Mo}=\mathrm{N}=\mathrm{N}=\mathrm{Mo}$] intermediate, which was isolated at low temperature and fully characterized. This complex also react with $\mathrm{N}_{2} \mathrm{O}$, but does not lead to the splitting of $\mathrm{N}-\mathrm{O}$ bond as expected from metal mediated decomposition of nitrous oxide ${ }^{4}$, but rather of $\mathrm{N}-\mathrm{N}$ bond, leading to [$\mathrm{Mo}-\mathrm{h}^{1}-\mathrm{NO}$] with NO in linear fashion and $\mathrm{Mo}(\mathrm{VI})-\mathrm{N}$. Similarly, reaction with CO_{2} yields $\mathrm{Mo}(\mathrm{III})-\mathrm{CO}$ and $\mathrm{Mo}(\mathrm{V})-\mathrm{O}$. The former can also be obtained from the reaction of $\mathbf{1}$ with CO. Reaction of $\mathbf{1}$ with S_{8} yields $\mathrm{Mo}(\mathrm{V})$-S complex. Finally, the reaction of $\mathbf{1}$ and ethylene generates the corresponding p-complex as it does by reaction with 2-butyne.

[1] M. F. Delley, F. Nunez-Zarur, M. P. Conley, C. Copéret et al., PNAS, 2014, 111 (32), 11624-11629.
[2] M. P. Conley, M. F. Delley, C. Copéret et al. , Inorg. Chem., 2015, 54 (11), 5065-5078.
[3] C. E. Laplaza, C. C. Cummins, Angew. CHem. Int. Engl. Ed., 1995, 34, 2042; D. Kuiper, P. Wolczanski, T. Cundari, JACS, 130, 2008, 12931-12943.
[4] W.B. Tolman, Angew. Chem., Int. Ed., 2010, 49, 1018-1024.

