Solution grown caesium-formamidinium lead halide perovskites for detection of gamma photons

<u>O. Nazarenko^{1,2}</u>, S. Yakunin^{1,2}, V. Morad¹, I. Cherniukh¹, M. V. Kovalenko^{1,2}*

¹ETH Zürich, Department of Chemistry and Applied Biosciences, CH-8093, Zurich, Switzerland, ² Empa-Swiss Federal Laboratories for Materials Science and Technology, CH-8600, Dübendorf, Switzerland

Hybrid formamidinium (FA) lead halide perovskites (FAPbX₃, X=I or Br/I) gained considerable popularity due to their excellent performance as photovoltaic and high energy photon-detecting materials [1]. The detection of gamma photons is enabled by high electronic quality of FAPbl₃ single crystals (SCs): low noise level and dark current, high mobility-lifetime product $(1.8 \times 10^{-2} \text{ cm}^2 \text{ V}^{-1})$, and high absorptivity of high-energy photons by Pb and I [1]. The difficulties arise from the phase instability of the desired three-dimensional (3D) FAPbl₃ cubic perovskite phase that undergoes a phase transition to non-perovskite 1D hexagonal lattice. The reason lies in the large size and spatial geometry of FA cation. The Goldschmidt tolerance factor (GTF) concept is a useful tool in estimation of the compositionally-dependent stability of 3D perovskites with ABX₃ general formula and idealized cubic lattice. $GTF = (r_A + r_x)/[\sqrt{2}(r_B + r_x)]$, where r_A , r_B and r_x represent the ionic radii of each lattice site constituent (in this case, $r_{FA^+}=253$ pm, $r_{Pb^{2+}}=119$ pm and $r_{I^-}=220$ pm). Stable cubic perovskites typically exhibit a GTF=0.8-1 (GTF=0.987 for cubic FAPbl₃ at room temperature). Decreasing the GTF of FAPbl₃ can be obtained by replacing FA⁺ cations by smaller Cs⁺ ions, and/or by replacing I⁻ anions with smaller Br⁻ ions, likely leading to higher stability. We will present a facile, inexpensive, solution-phase growth of cm-scale SCs of variable composition $Cs_xFA_{1-x}PbI_{3-y}Br_y$ (x=0-0.1, y=0-0.6). Comparing to the parent cubic FAPbI₃ compound these SCs show improved phase stability with shelf life (the time before hexagonal phase

impurities could be detected) of up to 20 days for quaternary $Cs_xFA_{1-x}PbI_3$ SCs and of more than 4 months for quinary $Cs_xFA_{1-x}PbI_{3-y}Br_y$ SCs [2]. These SCs possess outstanding electronic quality, represented by a high carrier mobility-lifetime product (up to 1.2×10^{-1} cm² V⁻¹) and a low dark carrier density allowing the sensitive detection of gamma radiation. With stable operation up to 30 V, these novel SCs have been used in a prototype of a gamma-counting dosimeter.

Figure 1. Energy resolved spectrum of an ²⁴¹Am source using perovskite SCs; (b) A photograph of typical 0.5-1 cm $Cs_xFA_{1-x}PbI_{3-y}Br_y$ SCs on a millimetre-grid paper; (c) Photoluminescence spectra of ground SCs.

S. Yakunin, D. N. Dirin, Y. Shynkarenko, V. Morad, I. Cherniukh, O. Nazarenko, D. Kreil, T. Nauser, M. V.Kovalenko. Nat. Photon. **2016**, 10 (9), 585-589.
O. Nazarenko, S. Yakunin, V. Morad, I. Cherniukh, M. V. Kovalenko. NPG Asia Mater., **2017**, 9, e373.