Asymmetric Anion-π Catalysis: Diastereospecific Michael/Henry Reactions for Bicyclic Prodcuts with Quarternary Chiral Centers on NDI Surfaces

L. Liu¹, Y. Cotelle¹, N. Sakai¹, S. Matile¹*

¹University of Geneva

The functional relevance of anion- π interactions has been integrated into viarious systems including anion recongnition, binding, transport and catalysis.¹ The general ideal to use anion- π interactions in catalysis is to stabilize negatively charged intermediates and transition states on π -acidic surfaces. The concept has been explicitly proved validate² first in 2013 and later on realized also for complex reaction systems including asymmetric enamine activation,³ iminium cascade processes⁴ and the first anion- π enzyme.⁵ As a new step forward, we are now extending anion- π catalysis to a more complicated cascade system to prepare bicyclic compounds with four stereogenic centers including one quaternary carbon center from achiral substrates. Hybridization of cinchona alcaloids with naphthalenediimides (NDI) affords a new anion- π cinchona fusion catalyst which results in much improved diastereoselectivity and enantioselectivity compared to previous catalysts and controls. Moreover, the cascade transformation was also realized by artificial anion- π enzyme in neutral water. Evidence in support of the relevance of anion- π interactions in catalyzing the cascade process include increasing stereoselectivities and velocities in the presence of π -acidic surfaces and inhibition with anions in order of NO₃⁻, Br⁻, BF⁻₆⁻.

Zhao, Y.; Cotelle, Y.; Sakai, N.; Matile, S. J. Am. Chem. Soc. **2016**,138, 4270. [2] Zhao,Y.; Domoto, Y.; Orentas, E.; Beuchat, C.;Emery, D.; Mareda, J.; Sakai, N.; Matile, S. Angew. Chem. Int. Ed. **2013**, 52, 9940. [3] Zhao, Y.; Cotelle, Y.; Avestro, A.-J.; Sakai, N.; Matile, S.J. Am. Chem. Soc. **2015**, 137, 11582. [4] Liu, L.; Cotelle, Y.; Avestro, A.-J.; Sakai, N.; Matile, S.J. Am. Chem. Soc. **2016**, 138, 7876. [5] Cottelle, Y.; Lebrun, V.; Sakai, N.; Ward, T. R.; Matile, S. ACS. Cent. Sci. **2016**, 2, 388.