
Synthesis and Derivatisations of $[Re(\eta^6-C_6H_5COOH)_2]^+$

C. Gotzmann¹, H. Braband¹, R. Alberto¹*

¹University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

Functionalised bis-arene complexes of transition metals are used as precursors for numerous reactions with applications in different fields, including medicinal inorganic chemistry and bioorganometallic chemistry. Recently, functionalised $[M(\eta^6\text{-arenes})_2]^{n+}$ sandwich complexes, containing the $d^6\text{-}\{Ru\}^{2+}$ and $\{Os\}^{2+}$ cores attracted attention as potential anti-cancer agents. The introduction of functionalities in $d^6\text{-metal}$ bis-arene complexes with chromium and molybdenum has also been described but studies with those complexes are comparably rare in bioorganometallic chemistry. Studies with group 7 bis-arene compounds (Re and Tc) are very rare in any respect, although their syntheses were already described in the 1960s.

Searching for new organometallic building blocks for imaging (99m Tc) and therapy (Re) in the context of theranostics, our group introduced a new synthetic route for the synthesis of the precursor complex [Re(η^6 -C₆H₆)₂]⁺ directly from [ReO₄]⁻.[1,6]

This work focuses on an improved synthetic pathway to $[Re(\eta^6-C_6H_5COOH)_2]^+$. Beside the high chemical stability of these complexes and its inertness towards oxidation and hydrolysis, the carboxylic groups represent a core feature for derivatisations with targeting moieties via amid bond formation. Amino acids, peptides or other biomolecules can conveniently be introduced along this approach.

[1] G. Meola, H. Braband, P. Schmutz, M. Benz, B. Spingler, R. Alberto, Inorg. Chem., 2016, 55, 11131-11139 [2] M. Benz, H. Braband, P. Schmutz, J. Halter, R. Alberto, Chem. Sci., 2015, 6, 165-169 [3] E.A. Trifonova, D.S. Perekalin, K.A. Lyssenko, A.R. Kudinov, J. Organomet. Chem., 2013, 727, 60-63 [4] G. Pampaloni, Coord. Chem. Rev., 2010, 254, 402-419 [5] D.S. Perekalin, A.P. Molotkov, Y.V. Nelyubina, N.Y. Anisimova, A.R. Kudinov, Inorganica Chimica Acta., 2014, 409, 390-393 [6] G. Meola, H. Braband, D. Hernández-Valdés, C. Gotzmann, T. Fox, B. Spingler, R. Alberto, Inorg. Chem., 2017, accepted