
Cross-Linked Collagen Triple Helices by Oxime Ligation

<u>N. B. Hentzen¹</u>, L. E. Smeenk¹, J. Witek², S. Riniker², H. Wennemers¹*

¹Laboratorium für Organische Chemie, ETH Zürich, CH-8093 Zürich, ²Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zürich

Collagen is the most abundant protein in mammals and the main component of their extracellular matrix.^{1,2} The chemical synthesis of collagen is attractive for medical and nanotechnological applications³ since it can provide access to structurally defined and functionalizable materials.^{4,5} However, the bottom-up design of materials mimicking the fibrous structures of natural collagen is hampered by the entropically unfavorable assembly of short single strands into triple helices.^{1,2} To lay the foundation for higher-ordered assemblies of collagen model peptides (CMPs), we covalently connected CMPs by oxime linkages between aminooxyproline (Aop)⁶ and 2-oxoacetamidoproline (Alp) derivatives placed in neighboring strands. The cross-linked strands folded into collagen triple helices with remarkably high thermal stabilities ($T_m \sim 80^{\circ}$ C). The design of the cross-links was guided by an analysis of the conformational properties of Aop, studies on the stability and functionalization of Aop-containing collagen triple helices, and molecular dynamics calculations. Our findings open new opportunities for the design of functional collagen-based materials forming by the sticky-ended assembly of structurally well-defined triple helices.

- [1] M. D. Shoulders, R. T. Raines, Annu. Rev. Biochem. 2009, 78, 929.
- [2] J. Bella, *Biochem. J.* **2016**, 473, 1001.
- [3] S. Chattopadhyay, R. T. Raines, *Biopolymers* 2014, 101, 821.
- [4] B. Brodsky, G. Thiagarajan, B. Madhan, K. Kar, Biopolymers 2008, 89, 345.
- [5] C. Siebler, R. S. Erdmann, H. Wennemers, Chimia 2013, 67, 891.
- [6] F. Liu, A. G. Stephen, R. J. Fisher, T. R. Burke, *Bioorg. Med. Chem. Lett* 2008, 18, 1096.